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Abstract

Partial eigensystem assignment with output feedback can lead to an unstable closed-loop
system. However, output feedback with passive linear time-invariant systems, such as flexible
space structures, is guaranteed to be stable if the controller is dissipative. This paper presents a
novel approach for synthesis of dissipative output feedback gain matrices for assigning a selected
number of closed-loop poles. Dissipativity of a gain matrix is known to be equivalent to positive
semidefiniteness of the symmetric part of the matrix. A sequential procedure is presented to
assign one self-conjugate pair of closed-loop eigenvalues at each step using dissipative output
feedback gain matrices, while ensuring that the eigenvalues assigned in the previous steps are
not disturbed. The problem of assigning one closed-loop pair is reduced to a constrained solution
of a system of quadratic equations, and necessary and sufficient conditions for the existence of
a solution are presented. A minimax approach is presented for determining parameters which
satisfy these conditions. This method can assign as many closed-loop system poles as the
number of control inputs. A numerical example of damping enhancement for a flexible structure

is presented to demonstrate the approach.
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Introduction

Pole placement has been studied extensively in the literature to shape transient response
of the closed-system. Many techniques are available for eigensystem assignment with full
state feedback. These techniques exploit the freedom beyond pole placement for multivariable
systems, identified in Ref. 1, for other objectives such as enhancing robustness of the pole
placement and minimizing the norm of the feedback gain needed to accomplish the placement
However, full state feedback is not feasible for many control applications such as control of
flexible structures. The dynamics of flexible structures is described by infinite dimensional
equations and is usually approximated by large second-order discrete models; therefore, the
measurement of the full state is not feasible. Output feedback pole placement is the practical
choice for such systems. However, much of the literature for output feedback eigensystem
assignment deals with relatively low order systems, where the number of states is less than
the sum of inputs and outpdt3® and therefore is not applicable for problems like control
of flexible structures. Conditions on the closed-loop eigenvectors for the existence of output
feedback gain matrices to accomplish the desired eigenvalue placement are discussed in Ref.
7. References 8 and 9 present techniques for synthesis of output feedback gains, which assign
a self-conjugate subset of the closed-loop eigenvalues. However, a major drawback of using
output feedback for eigensystem assignment of large order systems is that while assigning a
self-conjugate set of eigenvalues, the feedback may cause other closed-loop poles of the system
to become unstabl® Therefore, it is desirable to develop techniques for output feedback gain
matrices which assign dominant modes of the system while ensuring that the overall system is
not destabilized. This problem is addressed in the current paper for strictly passive linear time-
invariant systems in descriptor form, which are used in the characterization of the dynamics

of flexible space structures.

Robust control of flexible space structures is difficult due to its dynamic characteristics,
namely, numerous closely-spaced, low frequency modes with little inherent darhping

Moreover, the parameters associated with flexible structure models such as modal frequencies,



damping and mode shapes often cannot be identified accurately. Feedback control is further
complicated by instabilities induced by observation and control spillé%erslowever, with
collocated and compatible actuators and rate sensors, the system dynamics are passive,
irrespective of unmodelled dynamics and parametric uncerigitty? Moreover, by the
passivity theored?, a strictly passive controller guarantees robust stability of the closed-loop
system. For constant gain feedback, strict passivity requires that the symmetric part of the
constant gain matrix be positive definite. Note that symmetry of the gain matrix is not necessary
for strict passivity. Positive definiteness of the symmetric part of the output feedback gain
matrix is necessary and sufficient for strict passivity. Similarly, when the plant is strictly
passive, a passive controller ensures robust closed-loop stability. Positive semidefiniteness of
the symmetric part of the gain matrix ensures passivity of a constant gain feedback controller.
Thus, a strictly passive system is guaranteed to be robustly stable with constant gain output

feedback if the symmetric part of the gain matrix is positive semidefinite.

Thus, the robust eigensystem assignment problem for strictly passive systems is to construct
output feedback gain matrices whose symmetric part is positive semidefinite. Preliminary
approaches to these problems are described in Refs. 16 and 17. Reference 17 presents a
sequential procedure through which a pair of self-conjugate eigenvalues is assigned to desired
locations at every step with the aid of generalized Schur decompositions and orthogonal state
transformations. This procedure is repeated until up teelf-conjugate closed-loop eigenvalues
have been assigned, where is the number of control inputs to the system. At each step
the output feedback gains are designed such that the previously placed eigenvalues remain
unchanged. This approach reduces the problem of assigning one self-conjugate pair of closed-
loop eigenvalues to constrained solution of a set of quadratic equations. In this paper, necessary
and sufficient conditions for the existence of a solution to these quadratic equations are presented
in this paper for two cases, namely, the nonsymmetric gain matrices and the symmetric gain
matrices. Furthermore, a minimax approach is described for obtaining parameters which satisfy
the conditions for pole placement. Once parameters satisfying these conditions for pole placement

have been determined, the approach to evaluate output feedback gain matrices follows. These



results are first developed for assigning dominant poles of passive LTI systems in descriptor
form, in particular, for damping enhancement of flexible space structures with rate feedback.
Then, these techniques are extended to pole placement with both position and rate feedback for
second-order models of mechanical systems, while ensuring stability of the overall closed-loop
system. The conditions guaranteeing stability in this case are that the symmetric part of the
rate gain matrix is positive semidefinite, and the position gain matrix is symmetric and positive
semidefinite. Corresponding quadratic equations and conditions for existence of a solution for
eigenvalue assignment using both rate and position feedback are presented. Finally, a numerical
example of damping enhancement in the dominant modes of a structural testbed at NASA

Langley (CEM phase Il) is presented to demonstrate the application of this approach.

Passive LTI Systems

Systems that do not generate energy internally are referred to as passive systems.
Mathematically, input-output systems are defined to be passive,if) > 3, where (-, )
denotes the inner product of the input-output vector spaces,the input to the system is
the output of the system, anel is a parameter corresponding to the initial conditions of the
systend®. First, consider a constant gain systems G, where( is the constant gain matrix.

Note thaty’u = v’ Gu = u’(sym{G})u, wheresym{('} denotes the symmetric part 6f,
defined agsym{G} = %(Gir GT). Now, (y,u) > 0 (for passivity with3 = 0) if and only if
sym{G} > 0, where > 0" denotes positive semidefiniteness of the matrix on the left-hand
side of the inequality. Thus, it follows directly from the definition that positive semidefiniteness

of the symmetric part of the gain matri&;, is equivalent to passivity of a constant gain system.

Next, consider passivity of LTI systems in descriptor form. Such LTI systems are expressed

as

Ei=Az+4 Bu, y=Cz+ Du Q)

where > is the system state; is the system outputy is the system input, and the matrices

(E, A, B,C, D) describe the dynamics of this system. For regular descriptor systems, the transfer



function matrix of the LTI system i§/(s) = C'(skl — A)~' B+ D. Passivity of an LTI system can
equivalently be characterized @%s) + G*(s) > 0 for all Re{s} > 0 >, Extending the Kalman-
Yakubovitch lemma for passive LTI systems (or equivalently, positive real transfer functions) to
descriptor form, it follows that if there exist matrice®,= P1 > 0, L andW, which satisfy
ATPE+ETPA= —LTL
E'rp-ct= —1"w (2)
D+ Dt =wlw
then the transfer functiot¥(s) is positive real. Note that foff = /, the conditions in Eq. (2)
reduce to the necessary and sufficient conditions of the positive realnessfetima
Dynamics of a flexible space structure with rate output provides an example of passive
LTI systems. The dynamics of flexible space structures are typically expressed in second order

form as
Mi+ D+ Kz = Fu 3)

wherex denotes am x 1 vector of displacements, denotes amn x 1 vector of control inputs,

M, D, K are mass, damping and stiffness matrices of the system, respectively; @&dn

n x m input influence matrix describing the actuator force distribution. The mass mafrixs

a symmetric, positive definite matrix for physical systems, and the damping and stiffness matrices
are symmetric, positive semidefinite matrices. Using compatible rate sensors, collocated with
the actuators, the: x 1 vector of rate output of the system is givenpy- F7 i. Compatibility

of sensors and actuators implies that angular rate sensors are used with torquers, and linear
velocity sensors are used with force or thrust actuators. These conditions ensure that the output
influence matrix is the transpose of the input influence matrix. The dynamic equations for

second order models can be rewritten as

ORI 6 A R ORI

that is, the descriptor form

Ki:=Az4+Bu, y=0z (5)
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where z = [x] , B = [0 Ml A= [—K _pl B= [F andC = B*. Note that,
the conditions for positive realness in Eq. (2) above are satisfied with ]8 M0—1 :

L=[0 2Lp|andW =0, whereLp is a Cholesky factorization ab, thatis,D = L1, Lp.

Note that the mass matrix is nonsingular, and the stiffness matrix must be nonsingular for
complete observability with rate feedback. Thus, the matrices above satisfy the conditions of
the lemma for passivity of descriptor systems. Note that symmetry and positive definiteness
properties of the matrice®, K and D follow from the physics of flexible structure dynamics and

do not depend on specific values of the mass, stiffness and damping parameters. Thus, dynamics
of flexible structures with rate output are passive irrespective of the parametric uncertainties
associated with the mass, stiffness and damping matrices of the system. Furthermore, truncation
of the system dynamics to a smaller set of modes for reduced-order design models does not

affect these passivity properties.

The control law for constant gain output feedback is —G'y, where is a constantn x m
output feedback gain matrix. The closed-loop system dynamics with output feedback are given
by £z = (A— BGBT>Z. If the system is strictly passive, stability of the closed-loop system is
guaranteed by the passivity theorérfor any output feedback gain matrix whose symmetric part
is positive semidefinite. The main problem addressed in this paper is how to select a constant
output gain matrix, whose symmetric part is positive semidefinite, for assigning dominant poles
of a system to enhance closed-loop system response while ensuring over all closed-loop system
stability. The sequential procedure for assigning desired closed-loop eigenpairs described in this
paper assumes that the open-loop LTI system is strictly passive. Flexible space structures with
zero frequency rigid body modes, or modes with no damping, do not satisfy this condition. To
deal with such systems, static dissipative position and rate feedback controllers may be designed
first to ensure strict passivity of an intermediate closed-loop sygtenand the sequential
approach may be applied to this system for eigensystem assignment. Furthermore, subsequent
discussions assume that a low order control design model for plant dynamics, as opposed to

the full order finite element matrices, is used in the control design process. The reduction may



be achieved through a number of model reduction techniques, such as modal truncation and

modal cost analysis.

Sequential Procedure

The task of assigning dominant poles of strictly passive LTI systems with output feedback
gain matrices whose symmetric part is positive semidefinite is accomplished in a sequential
manner. In each step of the sequential procedure, one self-conjugate pair of closed-loop
eigenvalues is assigned to desired values while making sure that the previously assigned closed-
loop eigenvalues are not disturbed. The approach is an extension of the ideas in Refs. 9 and
20 to descriptor systems with output feedback. Generalized ordered real Schur transformations
of the system matriced; and A, are employed in each step of the sequential procedure, using
the following result from Ref. 21. Given two real matricésand A, there exist orthogonal
transformations. andU/ such that the matrices = LY EU andA = LT AU are in ordered real
Schur form. This transformation is known as the generalized real Schur transformation. These
transformations are used to move previously assigned eigenvalue pairs to the top left block of the
pair (E, /T), and the structure of the new gain matrix is prescribed such that it only affects the
eigenvalues in the lower bottom portion of the system matrices. At each step, after computing
the gain matrix that assigns a pair of desired closed-loop eigenvalues, the intermediate closed-
loop matrix is transformed to a generalized Schur form with all previously assigned eigenpairs
in the top left block of the updated system matrix. The overall output feedback gain matrix
is constructed by accumulating the gains from each step. Since the symmetric part of each of
the component matrices is positive semidefinite, the overall gain matrix also satisfies this robust
stability condition. This process can be continued untilclosed-loop eigenvalues have been

assigned to the desired locations.

The sequential procedure is conceptually straightforward and easy to implement in software
since updated variables in the sequential process overwrite previous variables. However,

description of the procedure below appears to be somewhat complicated due to notational



details in expressing the algorithm. For initialization of the procedure, denote the original state
coordinates as; = z, the system matrices in the original state coordinategas F, A; = A,
B, = B, C; = C, and, initially, the output gain matrix i&/o = 0. At the k" step of the
sequential procedurdf — 1) self-conjugate pairs of the closed-loop eigenvalues have been
placed in the previous steps. A gain matéiy is computed in this step to place thé& pair
of the desired closed-loop eigenvalues while making sure thatithel) self-conjugate pairs
assigned in the previous steps remain unchanged.

First, orthogonal matriced; and U; are selected such thﬁk = L{EkUk and /le =
L;{AkUk are in ordered real Schur form, and fite— 1) self-conjugate eigenvalue pairs assigned
in the previous steps are in the top left block (ofk,ﬁk) Applying these transformations to
the system equations leads ¥, = LI B, and C; = CiUy. If Gy is the gain matrix at the
k™ step, the closed-loop equations would be of the fdrpy;, = <ka — Ekék6k> %k, Where
Zp = UkT 21 is the transformed state. The goal is to prescribe the structure for the gain matrix

(i1, such that previously placed eigenvalues are not disturbed by this gain matrix.

The matricesEvk,ﬁk in ordered real Schur form are partitioned as follows:

Ek _ [Ekll Eklz] 7 gk _
0 Eg

Ap1y zfltklz ] (6)
0 Aga

where Eyi1, App are2(k — 1) x 2(k — 1) matrices, Ejqz, Apz are 2(k —1) x 2(n — k + 1)
matrices, andEvkzz, Zkzz are2(n —k+1) x 2(n — k+ 1) matrices. Note that the orthogonal
matricesL; andU; have been selected such that the previously placed closed-loop eigenvalues
are the eigenvalues o(Ekll, Zm), and the remaining eigenvalues of the system are
eigenvalues O(Em, an). Corresponding partions df; and C}, are

B |Ba] a=ien al @

k2
where By is a2(k — 1) x m matrix, By, is a2(n — k + 1) x m matrix, Cy is am x 2(k — 1)
matrix, andC}, is am x 2(n — k + 1) matrix.
Let NV, denote a matrix whose columns form an orthogonal basis for the left null space of

5k1, that is,ﬁk is a matrix with orthogonal columns such tﬁgfékl = 0. Let m; denote the

8



left nullity of C';, so thatN, is anm x mj; matrix. If the gain matrixG,; is constructed as
G = NxGN[', whereGi, may be an arbitraryn;, x m; matrix, then output feedback witfi;,

as the gain matrix will not affect thg: — 1) eigenvalue pairs assigned in the previous steps. To
see this, consider the expanded form of the following closed-loop matrix,

B Arn flm - Em@@ﬂi@?@z}

A — BpGiCy| = 8
{ ¢ e k} [ 0 Aoz — BpaNkGp N Cpo ®

The first column of submatrices is not affected by the feedback siig€}; = 0 by
design. Therefore, eigenvalues éﬁk, Ay — §k§k6k> are the union of the eigenvalues of
<Ek11, /T,m) and the eigenvalues o{fEkzz, /Nlm — Ekzﬁk@kﬁgC*m), that is, the previously
placed eigenvalues cﬁ‘Eku, Zm) remain unaffected by the output feedback.

The matrix(y is selected to place the" self-conjugate pair of closed-loop eigenvalues,
(A, ). Denoting By = Ejgz, Ay = Apga, By = BaNy, and(Cy = N/ Cy,, the problem is
reduced to selecting amj x m;j output feedback gain matriﬁk for the descriptor system
represented by the system matrides, Ay, By, and (', such that(\;, 3;) is an eigenvalue
pair of the closed-loop systefnlsy, Ay — Ek@@)- It must be assumed at this point that the
controllable and observable subspaces for the sy{te?p, By, f*k> are not null. Note that, by
construction, if the symmetric part @ty is positive semidefinite, then the symmetric part of
ék will be positive semidefinite, and iﬁk is symmetric and positive semidefinite, th% is
symmetric and positive semidefinite. Thus,Gif, satisfies the criteria for robustness, so does
Gr. The procedure for selectin@k is described in the next section.

Finally, the gain matrix is updated 8§ = G_1 + ék, and the system matrices are updated
as Epy1 = By, Apyq = <%Tk _ §k§k5k>, Biy1 = By, andCjq = Cy, for the succeeding
steps of the sequential procedure. Note that the dimension of the left null space 6f
decreases by in each step of the sequential procedure, thatug,= mj;_; — 2.

The sequential procedure above is repeated until all the desired dominant modes have been
shifted, up to a maximum of:/2 modes or complex-conjugate pairs, wheteis the number
of inputs. Afterm /2 iterations of the procedure described abowg, the dimension of the left

null space of@kl will be zero, and there would be no freedom to assign additional eigenvalues.



Eigenpair Assignment

This section describes the approach to select output feedback gains to assign one pair of
complex conjugate eigenvalues, while ensuring that (1) the symmetric part of the gain matrix
is positive semidefinite, or (2) the gain matrix is symmetric and positive semidefinite. For
notational simplicity, the system matrices will be denotedfgsA, B, ' (corresponding to
Ey, Ay, By, Cp, of the previous section), the output feedback gain matrix will be denoted as
G (instead of@k of previous section), the number of inputs is denoted/byin place ofm;)
and the desired eigenvalue pair will be denoféd X) rather than(\;, A;). Therefore, in the
simpler notation, the problem is to select a matrixwith a specified structure for robustness,
such that(\, D is a generalized eigenpair of the closed-loop system matkix,A — BGC).

Let ¢ be the closed-loop eigenvector corresponding to the eigenvalukhe generalized
eigenvalue problem becomés’  — A + BGC)¢ = 0. This closed-loop expression can be

rewritten as

¢

GC' GC'

It is obvious from Eq. (9), that the vector on the right hand side of the expression above must

¢

= =0 (©)

NE—A | B]

lie in the right null space of'. Let N be a matrix whose columns form an orthogonal basis
for the null space of’, that is,'N = 0. Note that though”, A and B are real matricesl’
and N are complex matrices since the eigenvalués complex scalar. However, to ensure
that the gain matrix is real the closed-loop eigenvector corresponding to the complex-conjugate
eigenvalue is chosen to be the complex-conjugatg, dfat is,s is chosen to be the eigenvector
corresponding to.. The overbar in the expressions in this section refer to complex-conjugation
of the elements of the corresponding vector (or matrix) only, as opposed to the Hermitian
operator, which involves transposition and complex-conjugation.

Since columns ofV span the null space df, it follows that

¢

Ny
:Noz:{———]oz (20)



where « is an arbitrary vector of complex elements, and the matrigesV, are formed by
partitioning N compatibly with¢ and GC'¢. Therefore,p = Nijo and GC'¢ = Nya, which

leads to
GCNija = Naa (11)

The eigenassignment problem is now reduced to selectinguch that there exists a gain
matrix, &, satisfying Eq. (11) whose symmetric part is positive semidefinite. Wibieing the
eigenvector corresponding tg real solutions for the gain matri& can be obtained, and the
equations can be written out to involve only real arithmetic operations as follows.

For the eigenvalue), with closed-loop eigenvectog, the matrixI' = [A\E — A | B],
andN is a matrix whose orthogonal columns span the null spade d¢ffthe arbitrary coefficient

vector is chosen to be, the complex-conjugate af, then it follows that
GCNia = Noa 12)

Eq. (11) and Eq. (12) can equivalently be rewritten as

GC[Re(Ny) —Im(Nl)]-Ifjs((g))- — [Re(\) _Im(Nz)][Ifjg((g” (13)
and
Gefm(v) e )| el0] ] = (m(va) e 1| 5609 (14)

where Re(e) denotes real part of the argument, ahd(e) denotes imaginary part of the
argument. In compact form these equations are written out as

GWip = Vip

(15)

GWap = Vap
where p = [Re(a); Im(a)], Wi = C[Re(N1) —Im(N1)], Vi = [Re(Na) —Im(N)],
Wy = C[Im(Ny) Re(Np)], and Vo = [Im(N3) Re(V2)]. Note that Eq. (15) is a system
of quadratic equations in the unknown variables, namely, the elements of the gain m@atrix,
and the coefficient vectop,. Further, the elements ¢f are constrained such thgtm(G) > 0.

Solution of Eqg. (15) provides the desired pole placement with dissipative gain matrices. The

11



following proposition gives the necessary and sufficient conditions to be satisfied by a coefficient

vector p for the existence of a solution matri¥ of desired structur.

Proposition 1. There exists a matrixs, whose symmetric part is positive semidefinite, that
satisfies Eq. (15), if and only if, there exists a vegtowhich satisfies

pTvlTVle >0

PPV Wap >0 (16)

1 2
(P v wip) (" Wap) = £ (0T e+ TV W) 2 0
Furthermore, there exists a symmetric, positive semidefinite matwhich solves Eq. (15) if

and only if there exists a vectgrwhich satisfies Eq. (16) and V;! Wap = p? VLW yp.

Proof: Denotey; = Vip, yo = Vop, o1 = Wyp andaxy = Wyp. Then, Eq. (15) leads to
Glz1 x2] = ;1 y2], and the conditions in Eq. (16) becopéz; > 0, ylz, > 0 and

(y?ml) (yg"rz) — i(y?Tz +ygm1)2 > 0. Therefore,

[e1 @] Gler w2]=[r1 2]y v2]
_ [xlTyl :clTyz] (17)
ehyr 2l
Adding this relation and its transpose yields
T T T
T Yy Tl O.5<y1 2+ Y5 171>
1 T sym(G)||z1 z2] = 18
R [ R I A TR 18)
Now if sym(G) > 0, then the equation above implies,
T T T
Yy 1 0.5<y1 2 + Y5 x1> >0 19
0.5<y1Tx2 + y2Tx1> szxz - (19)

Noting that determinants of principal minors of a positive semidefinite matrix must be
nonnegative leads to conditions in Eq. (16). Thus, if there exists a n@@fnhich satisfies Eq.
(15), and its symmetric part is positive semidefinite, then the vectmust satisfy conditions
in Eq. (16).

Conversely, it has to be shown that if a vectosatisfies the conditions in Eq. (16), then

there exists a matrix’ which satisfies Eq. (15), whose symmetric part is positive semidefinite.

12



This is proved by constructing such a matrix. Lét= [z1 z2] andY = [y1 2], then Eq.

(15) is rewritten ag=7X = Y. Let () be an orthogonal matrix, such that

o7y = [%1] (20)

whereY] is a nonsingulae x 2 matrix. The matrix¢) can be obtained by QR factorization

of Y. Now, defineX;, X, as follows
[)51} —oTx (21)

where X is a2 x 2 matrix, andX; is a (m — 2) x 2 matrix. Now X, is nonsingular ifz,
andz, are linearly independent (otherwise, Eq. 15 is solved trivially). Defiring= ¥1 X!,

it can be seen that
G 0 ):(1 _n
o] = @

Therefore, it follows that the matri& defined as+ = @ [GOH 8 QT satisfiesGX =Y.

Next it is shown thatym(G) > 0. From Eqg. (19) it follows that conditions in Eq. (16)
imply sym(VZX) > 0. Next, sinceV?x = (Q7v)" (QTX) = VI X}, sym(YTX) > 0 leads
to sym(iwflT)Nﬁ) > 0. Noting thatsym<§71T)N(1> = )N(lT {sym(énﬂf(l >0, sym(én> >0
follows from the nonsingularity ok ;. Finally, by constructionsym(G) > 0 if sym<é11> > 0.

Furthermore, if; is symmetric, that is(v = sym((), theny{ zo = 21 GTay = 21 GT 2y =
ylx1, so that the additional condition in the proposition is satisfied. On the other hand,
the additional constraint ensures thef X = Y X, is symmetric. SinceY; = G, X1,
Y'X, = X!Yi, and X, is nonsingluar, it follows that7y; is symmetric. Finally, again
by construction& is symmetric wher(7y; is symmetric. |

With this proposition, the problem of eigenpair assignment with dissipative output feedback
is reduced to selection of a coefficient vectowhich satisfies the conditions in Eg. (16). A
minimax approach to determining a coefficient vegtowhich satisfies the conditions in Eq.

(16) is described next.

13



Note that if there exists a coefficient vecteiwhich satisfies

HﬂW@—L@%ﬁ%ww%%%@Po
| (23)

pTVQTWZP - ‘ 5

<pTV1TW2p + pTVZTWM?) ‘ >0

then it also satisfies the conditions in Eq. (16). The first two inequalities of Eq. (16) are
obviously satisfied when the inequalities in Eq. (23) are satisfied, and multiplying the two
inequalities in Eq. (23) shows that the third condition of Eq. (16) is also satisfied. Further, the
inequalities in Eq. (23) can equivalently be written as four inequalities, which are quadratics

in the coefficient vectorp, as follows

filp) = pT{VTwl + %(VFWZ + VQTW1) }p > 0
fa(p) = pT{VlTWI —~ %(VlTWZ + VQTW1> } p >0

24
ﬁ@:ﬂﬁﬁ%+ammeWﬁﬁzo .
il =" { v = L (W4 ) b = o

A feasible coefficient vectorp, can now be obtained maximizing the minimum of the four
quadraticsf;(p), + = 1, ...,4. This problem becomes a standard minimax problem by reversing
the sign of the quadratics, that is, minimizing the maximum-of;(p), « = 1,...,4. This
problem is transformed to a constrained minimization problem by introducing a scalar variable,
n, as follows?,

min n  such that fi(p)+7n >0, i=1,...,4 (25)
p»n

Standard nonlinear programming techniques may be used for this constrained minimization.
Analytic gradients off;(p) are readily available, since the gradient of any quadrdiip) =

p"Qp, is given by 5 f(p) = (Q + QT)p. The optimization of Eq. (25) is very well-behaved
because the functiong;(p), : = 1, ...,4, are quadratic ip, and analytic gradients are linear in

p. A nonpositive value of; in Eq. (25) provides a feasible coefficient vectpy,that satisfies

the conditions in Eq. (16) for existence of a gain matrix whose symmetric part is positive

14



semidefinite. The convergence of the nonlinear optimization in Eq. (25) is not an issue, since
the search can be terminated once a desirable target valpgwafich must be negative) has
been attained. Furthermore, if a symmetric, positive semidefinite gain matrix is desired, the
additional equality constraint required for symmetry (in Proposition 1) can also be included in
the optimization of Eq. (25). Since this equality again involves a quadratjg its analytic

gradients are linear and readily available.

Experience in application of the minimax approach presented above has shown that this
technique is very effective in obtaining a feasible coefficient vecgtorwhich satisfies the
conditions in Eq. (16). However, a number of other approaches have also been explored
for this problem®1’. Another useful approach is to characterize a subspace for the yector
which satisfies the first two conditions in Eq. (16). This can be accomplished by examining
the eigenvectors corresponding the positive eigenvalues of the symmetric parts of the matrices
VI W, and V,/W,. Then the function in the third inequality of Eq. (16) is maximized with
p being restricted to this subspace, until a positive value for that function is reached. This
approach has also proved successful for a number of problems, though the minimax approach
presented earlier has been successful in obtaining a feasible coefficient yedtmra larger

class of problems.

Once such a coefficient vector has been determined, the procedure given in the proof
of Proposition 1 can be followed to determine the gain mat¥ixwith positive semidefinite

symmetric part, that assigns the desired closed-loop complex-conjugate eigenvalues.

Position and Rate Feedback

Pole placement for second order models, such as those for dynamics of flexible space
structures, with both position and rate feedback is considered in this section. Position feedback
gives additional freedom to place closed-loop eigenvalues, which may not be feasible with rate

feedback alone. The technique for eigenpair placement with rate and position feedback parallels

15



that for rate feedback alone, the difference being that the development is more involved since

expressions for both rate and position feedback gain matrices are considered simultaneously.

Consider a second-order model, as shown in Eq. (3), again. Position sensors are now
assumed to be collocated with the rate sensors and actuators to provide the position output.
Thus, anm x 1 vector of position outputy,, is given byy, = Cpz, whereC), = [T 0]. As

before, the rate output ig. = C,z, whereC, = [0 FT].

The eigensystem assignment problem is to determinerar m symmetric, positive
semidefinite position gain matrixy,, and ann x m rate gain matrix(+,, whose symmetric part
is positive semidefinite, such that the control law= —/,y, — iy, assigns dominant poles
of the system to desired locations. In other words, to determine gain matfjcaad ¢, such
that certain eigenvalues ¢/, A — BG,C, — BG,(C)) are at desired locations. Again, it must
be ensured that other closed-loop eigenvalues do not become unstable during output feedback
eigensystem assignment with position and rate feedback. Using Lyapunov function arguments,
it can be shown that if, is a symmetric, positive semidefinite matrix, and the symmetric part

of &, is positive semidefinite, then the closed-loop system is stable.

A sequential methodology is used for eigensystem assignment with position and rate
feedback, extending the approach for rate feedback in previous sections. At each step of
the process, one self-conjugate eigenpair is assigned, while employing a structure for the
gain matrices such that previously placed eigenvalues are not disturbed. For initializing the
sequential procedure, séty = F, Ay = A, By1 = B, By1 = B, Cp1 = C)p, Cr1 = Oy,
the original coordinates as; = =, and, the output gain matrices &§, = G.o = 0. At
the k" step of the sequential procedure, orthogonal matriegsand U, are selected such
that £y = L] EyUy, and A, = LT AU, are in ordered real Schur form, and the— 1) self-
conjugate eigenvalue pairs assigned in the previous steps are in the top left bI@EI;g,dﬁ).
Applying these transformations to the system matrices Ieaa]%p,'yp: L;{Bp,k, Er,k = L;{Bnk,

(j*p,k = Cp Uy and @,k = Cy yUg. Partitionﬁp,k and @,k as foIIows:@,,k = {@,’kl (j*p,kz}
andC,j, = |Crpy Crpo |, WhereCy 1, Crpy arem x 2(k — 1) matrices. System matrices

By, Ay, B,y and B, are also partitioned conformally. Let the columns &f; form an
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orthogonal basis for left null space 5‘%,1@1, and let the columns dfffr,k form an orthogonal basis

for left null space of@’kl. Form the rate and position gain matrices for k& step as follows:

Gk = NpuGp i NIy, where(, ;. is an arbitrary matrix to be defined; afg),; = N, ;G N1},
whereGT,k is an arbitrary matrix to be defined. Then, the matriéggk andCN?T,k do not affect

the previously placed eigenvalues. To see this, consider the expanded form of the closed-loop

system matrix,(ﬁk — BprGprCpi — Er,k@,k@,k» shown below.

Apn Apro — Bpkl kakN Cp,kz BfrklerkGfrkNrkarkZ

- (26)
0 Ak22 Bp k2 kak P,k Cp,kZ BT kZNT kGT kNT kCT k2

The first column of submatrices remains unaffected by the feedback because
NI Cor = 0 and N Chpy = 0. Thus the eigenvalues of the closed-loop system
with position and rate feedback of this form are the union of the eigenvalues of

<Ek11, Zm), which are the previously placed eigenvalues, and the eigenvalues of

<Ek227 Zkzz—Ep,kzﬁp,k@; kN C rkZNfrkGrkNTkCrlQ) Denoting £}, = Ejas,
Ay = Agaa, Ep,k = Ep,kZNp,ka Br,k = Br,ker,ka Cp,k = Np’kcp,kzi and (', = NTTJ@@,M’

the problem is to select matriceé?p,k and @,k that satisfy the closed-loop stability
constraints and thaf Ej, Ek—Ep,k@p,k@p,k—Er,k@,k@,o has one self-conjugate pair

at the desired values. The gain matrices are updatedigs = G,i_1 + G,x and

Grk = Grr—1 + ér,k, and the system matrices are updated for the succeeding steps as:
Epy1 = Ep, Apgy = <gk — By GypiCpk — BriGriCy k> Bpis1 = Bpky Brgyr = B,

Cpap1 = Cpx @andC, 111 = C,y. This procedure may be repeated uprig2 times, where

m IS the number of inputs to the system.

For notational simplicity, consider synthesis of position and rate gain matriges., for
eigenplacement of the system given by the matrieest, B, B,, C,, C;. In other words, the
problem has been reduced to selecting a symmetric, positive semidefinite position gain matrix,
G/p, and a rate gain matrixXy,, whose symmetric part is positive semidefinite, such (b\aﬁ)

is an eigenpair of the generalized eigenvalue problémA — B,G,C)p — B,G.C;). Let ¢ be
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the closed-loop eigenvector such that’ — A + B,G,Cy + B, G, C)¢ = 0, or equivalently,

¢ ¢
NE—A | B, | B]|G,Co|=T|GC08| =0 27)
G, Crd GrCrg

Let N be a matrix whose columns form the right null spacd’ofThen, solution to Eq. (27)

may be written as

¢ N
GCob | = | N, |a (28)
G, Cro N,

whereN1, N, and N, are conformal partitions of the matriX, and« is an arbitrary coefficient
vector. Eq. (28) leads to
GpCpNia = Npa

(29)
G,CrNiao = Nyov

Similar treatment for the complex-conjugate eigenvalueand a corresponding eigenvector,

¢, leads to
_ _ (30)
GTOTNla — NTE
Combining these equations to restrict all operations to real arithmetic results in
Grmfrlp = Vrlp Gpmfplp = Vplp
(31)

Gy Wiop = Viap GpWiyep = Vip
wherep = [Re(); Im(a)]; Wy = Co[Re(N1) —Im(Ny) i Viy = [Re(N,) —Im(N,)];
Wi = CoIm(N1) Re(N1)J; Vix = [Im(Ny) Re(Ny)J; Wyn = Cp[Re(N1) —Im(Ny)J;
Vir = [Re(V,) —Im(N,)]; Wy = Cp[Im(N1) Re(Ny)]; and Ve = [Im(N,) Re(N,)].
Thus, the problem of eigensystem placement with rate and position feedback is reduced to
selecting a coefficient vectqr, a symmetric, positive semidefinite matri&;,,, and a matrix,
G,, whose symmetric part is positive semidefinite which satisfy Eq. (31). The conditions for

existence of a solution to this system of quadratic equations is given in the following proposition.
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Proposition 2. There exists a symmetric, positive semidefinite matfiy, and a matrix,iz,
whose symmetric part is positive semidefinite, which satisfy Eq. (31), if and only if, there

exists a vectorn that satisfies

P VAW,p > 0 P VAWp >0

PV Woap > 0 P VEWiap > 0
(" VEWop) (o VEWep) — (5" ViEWap 4 0 VEW,p) 2 0 (32)
( TVTWHP) <p VrzWﬁP) - i(p VEWTZP +p ‘/TZWTlp) >0

p Ty 1” op =P VQVT

The proof of this proposition follows that of Proposition 1 for rate feedback.
Again, a minimax approach can be employed to determine a feasible coefficient ygctor,
which would satisfy the conditions of Eq. (32). It can be easily verified that a vectatisfies

these conditions if it satisfies the following eight quadratic inequalities,

fi(p) = pT{V Wyt + = <V Wya + V, Wpl)} >0
f2(p) ZPT{ Wt — 2( Wy +V; Wp1> }p >0
£(p) :pT{ TWoo + %( TWys + VW) }p >0
Ja(p) sz{ %(VP Wy + V5 f1> }p > 0 N
f5(p) :PT{ 1+ %( Wi +V, 1)}}? >0 >
fe(p) ZPT{ AUSE %( VW +V, 1) }p >0
f7(p)—pT{ LW+ o (V, Wrz+vﬂwﬂ)} >0

fs(p) =p {‘/rgWTZ - §<V£Wrz + WEWTI) }p > 0
and the equality constraint ensuring symmetry of the position gain matrix. A vedatisfying
these conditions can be determined by maximizing the minimunf;(@f), : = 1,...,8. This
is accomplished by performing a constrained minimization, similar to that of Eq. (25), with

the additional equality constraint for symmetry of the position gain matrix. This minimax
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approach for determining feasible coefficient vectprsatisfying the conditions of Eq. (32)

has been very successful in practical application, though a number of other techniques have
been attemptéd-l’. Once a coefficient vector satisfying the constraints in Eq. (32) has been
determined, the procedure to construct the desired matrices also follows the same approach as

for rate feedback.

Numerical Example

The approach for eigensystem assignment with dissipative gains has been applied for
synthesis of controllers to enhance the damping of the phase 2 CSI Evolutionary Model (CEM),
a testbed for control of flexible space structures at NASA Langley. Damping enhancement
control for this structure represents a typical problem in the control of flexible space structures,
since this structure possesses numerous, closely spaced, low-frequency modes, with uncertain
modal parameters. Damping enhancement is required since inherent damping of the structure is
very low. However, general output feedback pole placement techniques for increasing damping
in the dominant low frequency modes have a tendency to destabilize the remaining modes of
the system. When collocated rate sensors and actuators are used, the dynamics of the structure
are passive, and the technique described in this paper can be applied for damping enhancement

of the dominant modes, while ensuring stability of the overall closed-loop system.

The phase 2 CEM structure consists of a 62—bay central truss (each bay is 10 inches long),
along with two horizontal booms for suspension, a vertical laser, and a vertical reflector tower,
as shown in Fig. 1. This structure has 10 modes with frequencies up to about 5 Hz., and
95 modes with frequencies under 60 Hz. The first six modes are rigid body modes, due to
suspension of the structure from the laboratory ceiling, that have frequencies up to about 0.3 Hz.
Eight control stations housing collocated and compatible sensors and actuators are located at the
bays shown in Fig. 1. Air thrusters providing linear forces are available at these locations, along

the directions shown in Fig. 1, providing &nx 1 control input vectory. Linear velocities are
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assumed to be available at these locations, along the same directions, givirigraeasurement
vector,y. The problem is to determine ahx 8 rate gain matrix,(7, whose symmetric part
is positive semidefinite, such that the control law= —Gy places a subset of the closed-loop
eigenvalues at desired locations without destabilizing the remaining modes of the structure.

A control design model of the first 10 modes of the structure is used for this numerical
example. Low inherent damping ratio of 0.1 percent has been assumed for the open-loop system.
The open-loop eigenvalues along with damping and frequencies are shown in Table 1. Modal
displacements at the eight sensor/ actuator locations are shown in Table 2m»Siagecontrol
inputs are available, it is possible to assign desired amount of damping todumtales.

The first objective was to increase damping ratio in the first mode to 10 % that is, the first
desired pair of closed-loop eigenvalues wag = —0.0818 +0.8139;. Proceeding as described
above, the system of quadratic equations in Eqg. (15) was constructed for this eigenassignment.

Then, a coefficient vectoy, which satisfies the conditions in Eq. (16) was determined as

p=[1.0,1.0, 1.0, —1.0, —1.0, 1.0, —1.0, 1.0, 1.0,

—0.2757, 0.8621, —1.0, 1.0, —1.0, 1.0, —1.0]

using the minimax approach. Upper bounds on components of the coefficient yectoere
set to 1.0, and lower bounds were set tol.0, for the constrained optimization problem in
determining this coefficient vector. Proceeding as described in the proof of Proposition 1, a
gain matrix; for this eigenplacement was computed. Nonzero eigenvalues of the symmetric
part of G; are0.4129 and0.8035, which demonstrates that the symmetric part:gfis positive
semidefinite. Closed-loop eigenvalues with this gain matrix are shown in Table 3. It should be
observed that the gain matri%;;, successfully increased damping ratio of the first mode to 10
% without destabilizing other modes. In fact, damping is increased in most other modes due
to the dissipative nature of the controller.

For the second step, damping ratio in the second mode of the system was to be

increased to 10 % resulting in the second pair of desired complex-conjugate eigenvalues to
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be A3, = —0.0830 £ 0.8259;. A coefficient vector that satisfies the necessary and sufficient

conditions for eigenplacement in Eq. (16) was determined as

p =[1.0, 1.0, 1.0, 0.7088, 1.0, —1.0, —1.0, —1.0, —1.0,

—0.5250, —1.0, 1.0]

Note that the dimension of the coefficient vector for the second step has decreased!as

compared to the first step, since the dimension of the left null spaéNezofor the second step

has decreased yy that is,my = 6. The cumulative gain matri%, for placing two eigenpairs

has nonzero eigenvalues of the symmetric parh.2090, 0.6899, 0.9358 and 1.8008, which

demonstrates the stability constraint on the structure of gain matrices is satisfied. The closed-

loop eigenvalues with the gain matrik;,, are presented in Table 4, showing that both pair of

complex conjugate eigenvalues are successfully placed without destabilizing any other modes.
In the third step, damping ratio of the third mode was increased to 10 % which leads to

the third pair of complex-conjugate eigenvaluesiag = —0.0857 + 0.8522;. Repeating the

operations for the third step, a coefficient vector which satisfies the conditions in Eq. (16) was
p=[—1.0,1.0, —1.0, —0.9664, —1.0, 1.0, —1.0, 0.5762]

which led to the cumulative gain matrix afs for the third step with nonzero eigenvalues
of the symmetric part af.0961 , 0.2843, 0.7060, 0.9694, 1.9922 and 4.2001. Closed-loop
eigenvalues with gai-; are shown in Table 5. Again, damping ratio in the first three modes
has been increased exactly to 10 % as desired without destabilizing any other modes. In fact,
damping in most other modes has increased, with mode 6 being overdamped. Furthermore,
modes 4, 5, 7 and 8 are also very well damped.

With 8 control actuators, it is possible to increase damping in one other mode. Therefore,
mode 9 was chosen for an increase in its damping ratio to 10 % that is, the final pair of desired
closed-loop eigenvalues was chosenas = —1.8692418.5982;. A feasible coefficient vector

for this case was determined to pe= [—1.0, —1.0, —0.7275, 0.0497]. The final gain matrix,
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(+, that places four desired closed-loop eigenpairs, without destabilizing other higher frequency

modes, was computed to be

[ 0.7471 0.2028 —0.3887 —0.8128 —0.2086 0.1163 —0.3025 —0.90717
0.3282 1.1480 0.2282 —1.4228 0.9391 0.1604 —1.1181 —0.1716
—0.5818 —0.4845 1.1284 1.5011  —-0.1217 —-0.4460 0.0589  0.2609
—0.4390 -0.8793 —-0.3065 3.1249 —1.3062 0.4245 1.1933  0.2856
0.4710 1.2129  —-0.7990 —-1.4584 4.1617  0.4467 —3.9649 0.1294
0.4000  0.1577 —0.5367 —0.8686 —0.1063 0.3813  0.1086 —0.3153
—0.7939 —-1.3759 1.1685 1.7430  —4.1583 —0.65561 4.5028  0.2142

| —0.8909  0.0902 0.3491 0.3117  0.3107 —0.0493 0.4911 1.2872 |

Eigenvalues of the symmetric part of the overall gain matrixy, are
0.0043, 0.0969, 0.1242, 0.5703, 1.0164, 1.9239, 3.0166 and 9.7289, that is, sym(G) > 0.
Closed-loop eigenvalues with the overall gain matrix is shown in Table 6, showing that all four
closed-loop eigenvalue pairs have been placed at their desired locations, without destabilizing
any of the higher frequency modes. In fact, damping has tended to increase in most other
modes. This example clearly demonstrates the effectiveness of the proposed dissipative

controller design technique for robust eigensystem assignment.

Results of damping enhancement control with both position and rate feedback are presented
next. First, damping ratio of mode 1 was increased to 10 %. Following a procedure outlined in
the previous section, a symmetric, positive semidefinite position gain matrix, were determined to
assign the closed-loop pair. Closed-loop eigenvalues with these rate and position gain matrices
are shown in Table 7. Proceeding with the sequential procedure, the damping ratios of modes
2, 3 and 7 were increased to 10 %. The eigensystem assignment procedure resulted in the

following cumulative symmetric, positive definite position gain matrix,

r3.4841 —0.1125 —4.66563 0.2965 —0.2298  3.1246 1.1816  —1.90227
—0.1125 1.9084 —0.5832 —1.6722  7.2152 0.1647  —6.5656 —0.1680
—4.6653 —0.5832 7.9072  0.3844 1.5834  —4.2352 —=3.1930  2.7889
0.2965 —1.6722 0.3844 1.7415  —6.4787  0.1705 6.4519  —0.1206
P —0.2298 7.2152 1.5834 —6.4787 46.6525 —0.2519 —45.6357 0.2129
3.1246  0.1647 —4.2352 0.1705  —0.2519  3.3434 1.2556  —1.8501
1.1816 —6.5656 —3.1930 6.4519 —45.6357 1.2556  46.9748 —1.4609
—1.9022 —-0.1680 2.7889 —0.1206  0.2129 —1.8501 —1.4609  1.4274 |
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and a rate gain matrix, whose symmetric part is positive definite,

r 0.6007  —0.7380 —0.6090 0.7122 —-0.4572 0.6321 —1.0302 0.6469 7
0.4598  0.4789  0.4392  0.0355 1.6212 05455  0.0844 —1.3040
—0.4611 —-0.3645 1.0371 0.5765 —=0.3726 —0.1362 0.9946  0.3222
—0.7028 —0.7606 —0.3794 0.8393 —0.6959 —1.4334 0.3812 1.6530
0.9575 —0.3045 —-0.4236 -0.5543 3.5101  0.5159 —3.4491 —-0.6720
0.2021 —=0.7357 —0.9152 1.4169 —0.0963 0.6254 —0.6292 0.3972
0.3593 —1.06656 —0.1207 0.9327 —2.6389 0.1686  3.3490 —0.4591

| —1.2277  1.3110  0.0893 —1.6916 0.2233 —0.6664 0.5661  0.3660

Table 8 shows the closed-loop system eigenvalues using the rate and position gain matrices
obtained. It is observed that the desired closed-loop eigenvalues have been placed while
maintaining stability of the other modes. Comparing the frequencies of the closed-loop poles, it
is noted that some of the system frequencies have been shifted significantly from their open-loop
values. Position gain brings about this shift in frequencies of the open-loop system, as may be
anticipated. On the contrary, frequencies of the closed-loop system with rate feedback alone, in
Tables 3—-6, remain close to the open-loop values. This demonstrates one of the benefits of using
both position and rate feedback, namely, significant shift in open-loop frequencies is possible
if desired. Moreover, inclusion of the position feedback provides additional freedom beyond

eigenvalue assignment such that improved controller designs are possible.
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Concluding Remarks

This paper presents a novel approach for robust eigensystem assignment using constant gain
output feedback controllers with dissipativity constraints, that is, output feedback eigensystem
with gain matrices whose symmetric parts are positive semidefinite. Robust eigensystem
assignment in this context implies that stability of the closed-loop system is guaranteed, whereas
in general eigensystem assignment using output feedback may destabilize the closed-loop system.
This approach can be used for robust output eigensystem assignment for any passive LTI system
in descriptor form. Specifically, it has been applied to second-order models of flexible structures
with rate feedback. A sequential procedure is used to place one pair of complex conjugate closed-
loop eigenvectors in each step of the procedure, while ensuring that the previously assigned
eigenvalues are not disturbed using generalized Schur transformations. The problem of assigning
one pair of complex-conjugate closed-loop eigenvalues with gain matrices of a specified structure
is reduced to a constrained solution of a system of quadratic equations. Necessary and sufficient
conditions for the existence of a solution to these equations are presented in terms of inequality
constraints on a coefficient vector. A minimax approach is presented to determine coefficient
vectors which satisfy these constraints. It is shown that the sequential procedure can be used
to assign up ton self-conjugate closed-loop eigenvalues, wherds the number of control
inputs. For second-order models of flexible space structures, the approach has been extended
for robust eigensystem assignment with both position and rate feedback. A numerical example
of damping enhancement for a large flexible structure has been presented to demonstrate the
approach. This example clearly demonstrates that the proposed approach provides a practical
technique to design controllers that enhance the performance of the open-loop system while

ensuring that the overall system remains stable.
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Frequency
Open-loop Eigenvalues Damping Ratio
(rad/sec)
-0.0008+ 0.8180; 0.0010 0.8180
-0.0008+ 0.8301; 0.0010 0.8301
-0.0009+ 0.8565; 0.0010 0.8565
-0.0011+ 1.1308;y 0.0010 1.1308
-0.0011+ 1.1401; 0.0010 1.1401
-0.0019+ 1.9100y 0.0010 1.9100
-0.0107+ 10.7278; 0.0010 10.7278
-0.0149+ 14.9425; 0.0010 14.9425
-0.0187+ 18.6919; 0.0010 18.6919
-0.0341+ 34.0618; 0.0010 34.0618
Table 1. Open-loop eigenvalues
Mode
1 2 3 4 5 6 8
No
1 0.8315 | -0.0029 | 0.6053 | -0.0022 | -0.0346 | 0.3567 | -0.0347 | 0.6192
2 0.0299 | 0.0059 | -0.0492 | -0.0002 | -0.6041 | -0.1195 | -0.6025 | -0.0040
3 0.7498 | -0.0023 | -0.1425 | -0.0007 | 0.0614 | -0.9645| 0.0611 | 0.2986
4 0.0000 | -0.3740 | -0.0012 | 0.3563 | -0.0581 | 0.0030 | -0.1936 | 0.0113
5 -0.0014 | -1.0268 | 0.0030 | -0.4847 | -0.0434 | -0.0054 | -0.1433 | -0.0304
6 0.1430 | 0.0067 | 0.3071 | 0.0047 | 0.0000 | -0.3702 | 0.0001 | -1.7897
7 -0.8114 | 0.0024 | 0.3292 | 0.0031 | 0.0010 | -0.5627 | -0.0013 | 1.3165
8 0.0002 | -1.2687 | -0.0004 | 0.9737 | 0.3943 | 0.0019 | -0.9521 | -0.0072
9 1.2653 | -0.0089 | -1.0289 | 0.0021 | -0.0009 | 0.3151 | 0.0164 | 0.3747
10 -0.0165 | 1.0266 | 0.0059 | 0.0330 | 0.6375 | 0.0238 | 0.6428 | 0.0114

Table 2. Modal Displacements at Control Stations.
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Closed-loop Eigenvalues

Damping Ratio

Frequency

(rad/sec)
-0.0818+ 0.8139;y 0.1000 0.8180
-0.0036+ 0.8337; 0.0043 0.8338
-0.01334+ 0.8555y 0.0156 0.8556
-0.0352+ 1.1253;y 0.0313 1.1258
-0.23434+ 1.11125 0.2064 1.1356
-0.2059+ 1.9091; 0.1072 1.9202
-0.1326+ 10.7310; 0.0124 10.7319
-0.2305+ 14.9345; 0.0154 14.9363
-0.2526+ 18.6891; 0.0135 18.6908
-0.2818+ 34.0550; 0.0083 34.0561

Table 3. Closed-loop Eigenvalues With Gain{=;.

Frequency
Closed-loop Eigenvalues | Damping Ratio

(rad/sec)
-0.0818+ 0.8139; 0.1000 0.8180
-0.0830+ 0.8259; 0.1000 0.8301
-0.0159+ 0.8540;y 0.0186 0.8541
-0.19244 0.9840; 0.1919 1.0026
-0.3145+ 1.1213; 0.2701 1.1646
-0.7568+ 1.9581; 0.3605 2.0993
-0.27194+ 10.7216y 0.0254 10.7251
-1.5302+ 14.9152; 0.1021 14.9935
-0.6473+ 18.7686; 0.0345 18.7798
-0.4675+ 34.0439; 0.0137 34.0471

Table 4. Closed-loop Eigenvalues With Gain{=.
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Closed-loop Eigenvalues

Damping Ratio

Frequency

(rad/sec)

-0.0818+ 0.8139;y 0.1000 0.8180
-0.0830+ 0.8259; 0.1000 0.8301
-0.08574+ 0.8522; 0.1000 0.8565
-0.3648+ 1.0437; 0.3300 1.1056
-0.34634+ 1.1514y 0.2880 1.2024

-2.5906+ 1.5782 1.2610 2.0544
-2.71284 9.5085; 0.2744 9.8879
-2.0568+ 14.5821; 0.1397 14.7265
-1.3549+ 18.53115 0.0729 18.5806
-0.5327+ 34.0089; 0.0157 34.0131

Table 5. Closed-loop Eigenvalues With Gain{=s.

Frequency
Closed-loop Eigenvalues | Damping Ratio

(rad/sec)
-0.0818+ 0.8139; 0.1000 0.8180
-0.0830+ 0.8259; 0.1000 0.8301
-0.0857+ 0.8522; 0.1000 0.8565
-0.3648+ 1.0436; 0.3300 1.1055
-0.34634 1.1514; 0.2881 1.2023
-2.6015+ 1.5893 1.2631 2.0595
-2.86714 9.3545; 0.2930 9.7840
-3.2694+ 14.3800y 0.2217 14.7470
-1.8692+ 18.5982; 0.1000 18.6919
-0.6009+ 34.0359; 0.0177 34.0412

Table 6. Closed-loop Eigenvalues With Gain{=4.
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Frequency
Closed-loop Eigenvalues | Damping Ratio

(rad/sec)
-0.0818+ 0.8139;y 0.1000 0.8180
-0.0046+ 0.8415; 0.0055 0.8415
-0.00724 1.1550y 0.0062 1.1550
-0.0081+ 1.2455; 0.0065 1.2455
-0.09974+ 1.4382; 0.0692 1.4417
-0.15804 2.0261; 0.0778 2.0322
-0.0461+ 10.8179; 0.0043 10.8180
-0.1222+ 14.9897; 0.0081 14.9902
-0.0696+ 18.7224; 0.0037 18.7225
-0.0599+ 34.0745; 0.0018 34.0745

Table 7. Closed-loop Eigenvalues With Position Gain(/,; and Rate GainG,;.

Frequency
Closed-loop Eigenvalues | Damping Ratio

(rad/sec)
-0.0818+ 0.8139; 0.1000 0.8180
-0.0830+ 0.8259; 0.1000 0.8301
-0.0857+ 0.8522; 0.1000 0.8565
-0.15754 1.3598; 0.1151 1.3689
-0.1682+ 1.6559; 0.1010 1.6644
-0.5009+ 3.7347; 0.1329 3.7682
-1.0728+ 10.6741; 0.1000 10.7278
-1.2597+ 18.5179; 0.0679 18.5607
-3.5796+ 20.9683; 0.1683 21.2717
-0.7608+ 34.7506; 0.0219 34.7589

Table 8. Closed-loop Eigenvalues With Position Gair(s,4 and Rate Gain G4.
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Gimbal A

Accelerometers (1-8)

? Thrusters (1-8) @ /

Figure 1. Schematic of Phase 2 CEM Structure, With Location of 8 Control Stations.
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